I made one crypto challenge each for CODEGATE CTF 2022 quals and finals. In this article, I’m gonna explain how the cube attack works, and show the way to solve my challenge “Happy S-box” from the quals.
Cube Attack
Consider a multivariate equation over
First, let’s fix the value of
Let’s think of one monomial
If the number of variables in
So, we can get an linear equation
Happy S-box
Here’s the code of Happy S-box.
#!/usr/bin/python3
import os
import random
class LFSR:
rand = random.Random("Codegate2022")
Sbox = [ [0] * 64 + [1] * 64 for _ in range(512 - 6) ]
for i in range(len(Sbox)):
rand.shuffle(Sbox[i])
def __init__(self, seed):
self.state = seed
for _ in range(1024):
self.next()
def next(self):
v = self.state
# x^512 + x^8 + x^5 + x^2 + 1
n = ((v >> 0) ^ (v >> 504) ^ (v >> 507) ^ (v >> 509)) & 1
self.state = (v >> 1) | (n << 511)
def output(self):
out = 0
for i in range(512 - 6):
out ^= self.Sbox[i][(self.state >> i) & 127]
return out
guess_this = os.urandom((512 - 8) // 8)
guess_this = guess_this[:-1] + bytes([guess_this[-1] & 0xf0])
seed = int.from_bytes(guess_this, 'big') << 8
print("Seed generated. It'll take some time to generate a hint.")
v = 0
for i in range(2 ** 12):
lfsr = LFSR(seed | i)
v <<= 1
v |= lfsr.output()
print("Here's the hint. It should be enough.")
print(v.to_bytes(2 ** 12 // 8, 'big').hex())
ans = input("Guess the seed > ")
if guess_this == bytes.fromhex(ans):
with open('flag', 'r') as f:
print(f.read())
else:
print("WRONG")
There are too many S-boxes in LFSR.output()
. Can we use the cube attack here?
Let’s see the degree of these S-boxes:
from sage.crypto.boolean_function import BooleanFunction
import random
rand = random.Random("Codegate2022")
Sbox = [ [0] * 64 + [1] * 64 for _ in range(512 - 6) ]
for i in range(len(Sbox)):
rand.shuffle(Sbox[i])
mx = 0
for i in range(len(Sbox)):
v = BooleanFunction(Sbox[i]).algebraic_degree()
mx = max(v, mx)
print(mx)
The result is 6. Oh, so we can perform the cube attack by picking 5 variables
for LFSR(seed | i).output()
for
for i in range(2 ** 12)
, we can solve this challenge by:
- Preprocess linear equations which can be acquired from
for i in range(2 ** 12)
- Solve the linear system after getting outputs from the server
Preprocess
#!/usr/bin/python3
import os
import random
import itertools
from tqdm import tqdm
class LFSR:
rand = random.Random("Codegate2022")
Sbox = [ [0] * 64 + [1] * 64 for _ in range(512 - 6) ]
for i in range(len(Sbox)):
rand.shuffle(Sbox[i])
def __init__(self, seed):
self.state = seed
for _ in range(1024):
self.next()
def next(self):
v = self.state
# x^512 + x^8 + x^5 + x^2 + 1
n = ((v >> 0) ^ (v >> 504) ^ (v >> 507) ^ (v >> 509)) & 1
self.state = (v >> 1) | (n << 511)
def output(self):
out = 0
for i in range(512 - 6):
out ^= self.Sbox[i][(self.state >> i) & 127]
return out
outfile = open('eq.txt', 'w')
for c in tqdm(itertools.combinations(list(range(12)), 5), total=792):
base = 0
for x in itertools.product(range(2), repeat=5):
inp = 0
for i in range(5):
if x[i]:
inp |= 1 << c[i]
base ^= LFSR(inp).output()
arr = []
for idx in range(512 - 12):
res = base
for x in itertools.product(range(2), repeat=5):
inp = 1 << (idx + 12)
for i in range(5):
if x[i]:
inp |= 1 << c[i]
res ^= LFSR(inp).output()
arr.append(res)
arr.append(base)
outfile.write(str(arr) + '\n')
outfile.close()
Solve
#!/usr/bin/sage
import os
import random
import itertools
from pwn import *
import sys
if len(sys.argv) != 3:
print("How to use: ./solver.sage <IP> <PORT>")
exit(0)
r = remote(sys.argv[1], sys.argv[2])
print("CONNECTED")
r.recvuntil(b'enough.\n')
output = int(r.recvline().strip().decode(), 16)
print("RECEIVED")
# Solver ======================================
mat = []
vec = []
with open('eq.txt', 'r') as f:
for _ in range(792):
arr = eval(f.readline().strip())
mat.append(arr[:-1])
vec.append(arr[-1])
mat = Matrix(GF(2), mat)
for idx, c in enumerate(itertools.combinations(list(range(12)), 5)):
base = 0
for x in itertools.product(range(2), repeat=5):
inp = 0
for i in range(5):
if x[i]:
inp |= 1 << c[i]
base ^^= (output >> (2 ** 12 - 1 - inp)) & 1
vec[idx] ^^= base
vec = vector(GF(2), vec)
ans = mat.solve_right(vec)
guess = int(0)
for i in range(512 - 12):
guess |= int(ans[i]) << int(i)
r.recvuntil('> ')
r.sendline((hex(guess)[2:] + '0').encode())
r.interactive()
Conclusion
The attack itself is easy to understand, but it may seem a bit hard to use in
real world, as most of PRNGs are much more complicated than this nowadays. Who
uses S-boxes over